## Copper Nuclear Quadrupole Resonance Spectra of Tris(tetramethyl-thiourea)copper(I) Tetrafluoroborate and Perchlorate

Yukio Hiyama, Noriyuki Watanabe, and Eiji Niki

Department of Industrial Chemistry, Faculty of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113 (Received June 10, 1976)

<sup>63</sup>Cu, <sup>65</sup>Cu NQR spectra of tris(tetramethylthiourea)copper(I) tetrafluoroborate ([Cu(tmtu)<sub>3</sub>]BF<sub>4</sub>) and tris(tetramethylthiourea)copper(I) perchlorate ([Cu(tmtu)<sub>3</sub>]ClO<sub>4</sub>) have been observed. The resonance frequencies are 27.390 MHz and 25.341 MHz in the BF<sub>4</sub> compound, 27.390 MHz and 25.340 MHz in the ClO<sub>4</sub> compound (23.0 °C). These results indicate that the crystal structure of [Cu(tmtu)<sub>3</sub>]ClO<sub>4</sub> is very similar to that of [Cu(tmtu)<sub>3</sub>]BF<sub>4</sub> and the copper valence has sp<sup>2</sup> hybridization with p $\pi$ -d $\pi$  bonding. The temperature dependence of <sup>63</sup>Cu NQR of [Cu(tmtu)<sub>3</sub>]BF<sub>4</sub> has been studied from -100 to +100 °C. A discontinuous point has been discovered at -11 °C.

Recently, copper(I) coordination compounds have been studied because of biochemical or stereochemical interest.

Tris(thiourea)copper(I) tetrafluoroborate<sup>4)</sup> is a sulfurbridged dimer with tetrahedral Cu(I), while bis-(thiourea)copper(I) chloride contains trigonal planar CuS<sub>3</sub> in a chain structure. Several copper NQR spectra<sup>1-3)</sup> of these compounds, for example KCu(CN)<sub>2</sub>, have been studied. [Cu(tmtu)<sub>3</sub>]BF<sub>4</sub> is a trigonal planar Cu(I) monomer,<sup>4)</sup> and its chemical bonding is also very interesting. So we synthesized [Cu(tmtu)<sub>3</sub>]BF<sub>4</sub> and [Cu(tmtu)<sub>3</sub>]ClO<sub>4</sub>, and measured the copper NQR of these compounds. Furthermore, the temperature dependence of the resonance frequency in the BF<sub>4</sub> complex was carefully studied.

## Experimental

Materials. Tetramethylthiourea and copper(II) tetrafluoroborate were commercially obtained. Copper(II) perchlorate was prepared from copper(II) carbonate and perchloric acid.

Preparation of Compounds. [Cu(tmtu)<sub>3</sub>]BF<sub>4</sub> was prepared by a method given by Weininger and Amma.<sup>4)</sup> [Cu(tmtu)<sub>3</sub>]-ClO<sub>4</sub> was prepared by the same method except for copper(II) perchlorate. These compounds are quite pale and polycrystalline.

Analysis. The composition of these compounds was ascertained by C-H-N analysis. [Cu(tmtu)<sub>3</sub>]BF<sub>4</sub>—Found: C, 33.22; H, 6.90; N, 15.69%. Calcd for C, 32.94; H, 6.63; N, 15.36%. [Cu(tmtu)<sub>3</sub>]ClO<sub>4</sub>—Found: C, 32.15; H, 6.57; N, 14.92%. Calcd for: C, 32.19; H, 6.48; N, 15.01%.

Spectrometer. The search spectrometer was a noisecontrolled superregenerative spectrometer that was built in our laboratory. The frequency measurement was made by use of the regenerative spectrometer that has been described<sup>5</sup> by Tsukada *et al.* The total error may amount to approximately 2 KHz.

## Results and Discussion

<sup>63</sup>Cu NQR spectra of [Cu(tmtu)<sub>3</sub>]BF<sub>4</sub> are shown in Fig. 1. The observed resonance frequencies of the two compounds at 23.0 °C are given in Table 1.

Since <sup>63</sup>Cu or <sup>65</sup>Cu has a nuclear spin I=3/2, only a single NQR frequency  $v=(e^2Qq/2h)(1+(\eta^2/3))^{1/2}$  is observed. Thus we cannot determine the coupling

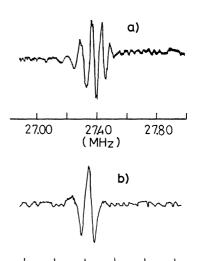



Fig. 1. <sup>63</sup>Cu NQR spectra of [Cu(tmtu)<sub>3</sub>]BF<sub>4</sub>. a) superregenerative spectrometer, b) regenerative spectrometer.

2740

(MHz)

27.20

27.60

Table 1. Resonance frequency (MHz)

| Compound                                | Temp                     | <sup>63</sup> Cu | <sup>65</sup> Cu |
|-----------------------------------------|--------------------------|------------------|------------------|
| [Cu(tmtu) <sub>3</sub> ]BF <sub>4</sub> | 23.0°C                   | 27.390           | 25.341           |
| [Cu(tmtu)3]ClO4                         | $23.0^{\circ}\mathrm{C}$ | 27.390           | 25.340           |

constant and the asymmetric parameter independently without a Zeeman study.

According to the X-ray analysis by Weininger and Amma,<sup>4)</sup>  $\text{Cu}(\text{tmtu})_3^+$  is distorted from a trigonal configuration. But we assume the asymmetric parameter  $\eta$  is zero for simplicity. On this assumption, we calculated the EFG (electric field gradient; q) of these compounds in Table 2. The EFG due to a 4p electron

Table 2. Value of the observed EFG

| Compound                                                                                                            | $q(	imes 10^{15} 	ext{ esu cm}^{-3})$         |  |  |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| [Cu(tmtu) <sub>3</sub> ]BF <sub>4</sub><br>[Cu(tmtu) <sub>3</sub> ]ClO <sub>4</sub><br>4p electron <sup>6) a)</sup> | 4.80<br>4.80 $Q(^{63}Cu) = -0.16$ barn<br>3.1 |  |  |

a) determined from the constant of the magnetic hyperfine splitting, using the nuclear moment obtained by the nuclear induction method.

Fig. 2.  $p\pi$ — $d\pi$  bonding in  $Cu(tmtu)_3^+$  ion.  $3d_z^2$  (Cu) electron backdonates to  $\pi$  orbital (tmtu).

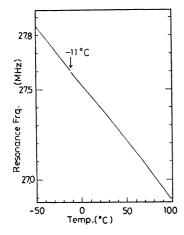



Fig. 3. Temperature dependence of  $^{63}$ Cu NQR in [Cu-(tmtu)<sub>3</sub>]BF<sub>4</sub> (-50 to +100 °C). 28.763 MHz (-196 °C).

of the copper atom calculated by Korol'kov<sup>6</sup>) is also shown in Table 2. So the EFG due to a sp<sup>2</sup> configuration (4s, 4p, S=33%) is  $3.1\times10^{15}$  esu cm<sup>-3</sup>. Since the BF<sub>4</sub><sup>-</sup> ion is well separated from the copper atom, the

EFG due to the negative ion is negligibly small.

The EFG observed around the copper atom in the  $\mathrm{Cu}(\mathrm{tmtu})_3^+$  is greater than that calculated for the  $\mathrm{sp}^2$  hybrid, quite covalent bond. We explain this by saying that the  $3\mathrm{d_z}^2$  electron of the copper backdonates to the  $\pi$  orbital of the ligands, and as a result the vacant  $3\mathrm{d_z}^2$  orbital enhances the EFG around the copper atom. Consequently we conclude that the EFG observed is due to  $\mathrm{sp}^2$  hybridization with  $\mathrm{p}\pi$ -d $\pi$  bonding (Fig. 2).

The crystal structure of [Cu(tmtu)<sub>3</sub>]ClO<sub>4</sub> has not yet been resolved. But we suggest that the crystal structure of the ClO<sub>4</sub> complex is close to that of the BF<sub>4</sub> complex, because of the similarity between the two EFG's.

Temperature Dependence. The temperature dependence of  $^{63}$ Cu NQR in [Cu(tmtu)<sub>3</sub>]BF<sub>4</sub> is shown in Fig. 3. The observed frequency gradient is very large (dv/dT=-6.5 kHz/°C) compared with that of Cu<sub>2</sub>O (-3.3 kHz/°C). A discontinuous point has been discovered at -11 °C, but we could not ascertain any phase transition.

## References

- 1) J. D. Graybeal and G. L. McKown, *Inorg. Chem.*, **5**, 1909 (1966).
- 2) G. A. Bowmaker, L. D. Brockliss, and R. Whiting, Aust. J. Chem., 26, 29 (1973).
- 3) G. A. Bowmaker, L. D. Brockliss, C. D. Earp, and R. Whiting, Aust. J. Chem., 26, 2593 (1973).
- 4) M. S. Weininger and E. L. Amma, J. Chem. Soc., Chem. Commun., 1972, 1140.
- 5) T. Tsukada, Y. Hiyama, N. Watanabe, and E. Niki, Bunseki Kagaku, 24, 787 (1975).
- 6) V. S. Korol'kov and A. G. Makhanek, *Opt. Spektrosk.*, 12, 87 (1962).